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Abstract
Objective. Activity-dependent stimulation (ADS) is designed to strengthen the connections 
between neuronal circuits and therefore may be a promising tool for promoting 
neurophysiological reorganization following a brain injury. To successfully perform this 
technique, two criteria must be met: (1) spikes in the extracellular electrical field potential 
must be detected accurately at one site of interest, and (2) stimulation pulses generated at fixed 
(<1 ms jitter), low-latency (<10 ms) intervals relative to each detected spike must be delivered 
reliably to a second site of interest. Here, we aimed to improve noise rejection in a low-cost 
commercial system to reliably perform ADS in awake, behaving rats, while maintaining 
latency requirements. Approach. We implemented a spike detection state machine on a field-
programmable gate array (FPGA). Because the accuracy of spike detection can be heavily 
reduced in awake and behaving animals due to biological artifacts such as movement and 
chewing, the state machine tracks candidate spike waveforms, checking them against multiple 
programmable thresholds and rejecting any spikes that fail to meet a programmed threshold 
criterion. Main Results. A series of offline analyses showed that our implementation was 
able to appropriately trigger stimulation during epochs of biological artifacts with an overall 
accuracy between 72% and 97%, fixed computational latency of 167 µs, and an algorithmic 
latency of 300 µs to 800 µs. Significance. Our improvements have been made open-source 
and are freely available to all scientists working on closed-loop neuroprosthetic devices. 
Importantly, the improvements are easily incorporated into existing workflows that utilize the 
Intan Stimulation and Recording Controller.
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1.  Introduction

Recent preclinical work has investigated the feasibility and 
efficacy of intracortical microstimulation (ICMS) coupled 
to neural activity to promote rehabilitation after brain injury 
(Azin et al 2011a, 2011b, Guggenmos 2013). In brain-injured 
rats, constraining the timing of ICMS to within a few mil-
liseconds of a detected extracellular action potential recorded 
in a second area improves motor skill beyond that achieved 
by randomly timed stimuli (Guggenmos 2013). This ICMS 
paradigm, known as activity-dependent stimulation (ADS), 
has also been used in healthy macaques to pair sites within 
motor cortex and alter evoked EMG output (Jackson 2006). 
The efficacy of these protocols relies both upon the acc
uracy of the spike detector and upon the reliability of subse-
quent low-latency (<10 ms) delivery of ICMS. Furthermore, 
because the invoked strengthening of connections between 
sites is thought to be generated by a Hebbian mechanism, low 
jitter in the delivery of stimuli (<1 ms) is critical; for example, 
the difference in timing between invoking maximal potentia-
tion and maximal depression of synaptic efficacy in hippo-
campal cultures is  <5 ms (Bi and Poo 1998). Depending upon 
the distance, type, and number of synapses that are putatively 
involved between the targets of ADS, it is also possible that 
the  <10 ms latency constraint may be restricted to as low 
as  <3–4 ms.

Historically, spike detection has been performed by 
applying a monopolar voltage threshold to the amplified and 
filtered neurophysiological signal, counting each rising edge 
of the resultant logical signal as the onset of a spike (Cheney 
and Fetz 1985). However, spike detection done in this way 
tends to conflate signals generated by movement and chewing 
with spikes from neural units when used in awake animal 
experiments, due to the similar frequency characteristics and 
larger amplitude of the former. For ADS, which relies upon 
the specific pairing of neurophysiological activity between 
two sites, non-specific stimulation due to biological noise 
sources would be obviously problematic.

Although many algorithms that are superior to monopolar 
voltage thresholds now exist and are easily implemented in 
various software packages for spike detection and sorting, the 
latency required in communicating with a host device can be 
prohibitive for ADS. Previously, ADS had been implemented 
in lightweight telemetric devices using an application-spe-
cific integrated circuit (Azin et  al 2011a, 2011b). However, 
for a long-term neurophysiological data acquisition solution, 
a more flexible architecture that can simultaneously acquire 
signals from hundreds of channels would be desirable. In 
addition, due to the timing constraints mentioned previously 
(<10 ms latency between detection and stimulation;  <1 ms 
jitter in stimulus delivery), software solutions that involve a 
USB chain cannot be used. Therefore, the most tenable solu-
tions need to be implemented algorithmically in hardware, 
such as through a field programmable gate array (FPGA), a 
PCIe card interfaced through an ethernet connection, or some 
other comparable digital signal processing unit.

Recently, the commercial availability of high-gain, high-
resolution custom amplifier integrated circuits (Harrison and 

Charles 2003, Harrison 2007), which interface to a host device 
through a serial parallel interface (SPI) has made it possible 
to construct relatively inexpensive neurophysiological acqui-
sition systems that scale to high numbers of recording chan-
nels. These systems, such as the acquisition system provided 
by Intan or the Open-Ephys acquisition board (Siegle 2017), 
use an FPGA to run the SPI that controls the amplifier chip 
while maintaining a buffer for USB communication with a 
host computer. Several proposed spike detection and spike 
sorting techniques take advantage of the FPGA, an integrated 
circuit that the end-user can reconfigure (Biffi 2010, Gibson 
2013, Park 2017, Vallicelli 2017). Implementing the detec-
tion and sorting circuit on an FPGA allows the use of neuro-
physiological spiking as a reliable control signal in real-time, 
with low-latency; however, most implementations require 
custom integration with respect to the design of the full data 
acquisition circuit, which typically varies from laboratory to 
laboratory.

Here, we implemented a spike detection state machine 
designed to provide multiple threshold windows, reducing the 
likelihood of activity from sources other than spiking neural 
units on a single channel leading to the delivery of stimula-
tion. The algorithm reduces the erroneous detection of spikes 
during biological noise in awake animals using an intuitive 
algorithm that requires minimal computational power. The 
implementation is conveniently designed to work as a modifi-
cation to the existing open-source code provided by Intan for 
use in conjunction with their low-cost commercial platform 
for neurophysiological data acquisition and stimulus delivery. 
Importantly, the system allows the application of ADS with a 
fixed minimum latency  <1 ms and has the potential to scale to 
a high number of channels in future design iterations.

2.  Methods

2.1.  Hardware architecture

The hardware architecture of the acquisition system and spike 
detector consists of three core components (figure 1):

	 1.	�Headstage: an amplifier circuit connected to a micro-
electrode array with an arbitrary number N of physical 
microelectrode leads placed near the neural substrate of 
interest. 

	 2.	�FPGA: an interface that allows the amplifier circuit to 
multiplex both the incoming microelectrode signals and 
any outgoing stimulation commands to the appropriate 
microelectrodes.

	 3.	�Host: a general-purpose computer that provides an inter-
face to the system, allowing the user to select the desired 
microelectrode channels and how a closed-loop stimula-
tion scheme will be implemented.

This implementation used a commercially available inte-
grated circuit and pre-assembled headstage (RHS2116; Intan 
Technologies, Los Angeles, CA, USA) to connect to the 
microelectrodes. To interface with this circuit, we used the 
Intan Stimulation/Recording Controller, which consists of an 
FPGA evaluation board (XEM6010-LX45; Opal Kelly Inc., 
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Portland, OR, USA) equipped with a Xilinx Spartan 6 FPGA 
(XC6SLX45-2; Xilinx Inc., San Jose, CA, USA), a 128-Mbyte 
SDRAM chip, a 100-MHz clock source, I/O connectors, and 
a USB 2.0 interface chip capable of streaming data to a host 
computer at rates exceeding 20 Mbyte s−1. A desktop personal 
computer (Z230; Hewlett-Packard, Palo Alto, CA, USA) run-
ning Windows 7 (Microsoft, Redmond, WA, USA) was used 
to control the USB chain.

Intan provides a hardware design that embeds the open-
source USB/FPGA interface developed by Opal Kelly. This 
design makes it possible to read and modify registers of 
the RHS2116 from a host computer. It consists of verilog 
hardware description language (HDL) code written for the 
XEM6010-LX45 evaluation board. This code is synthesized 
using the free Xilinx ISE WebPack software. The resulting bit-
file is locally stored on the board in a dedicated Flash memory 
and can be updated through the USB interface. It is loaded on 
the Spartan-6 FPGA at each power-up, allowing the FPGA to 
interpret commands and parameters issued by the user from 
the USB chain.

At its core, the USB/FPGA design provided by Intan is a 
state machine that controls SPI buses on up to eight periph-
eral RHS2116 amplifier circuits. The interface also contains a 
module that implements a short-latency threshold comparator 
on up to eight channels of digitized amplifier data streams 
routed to 16-bit digital-to-analog converters (DAC; AD5662; 
Analog Devices, Norwood, MA, USA) mounted on the evalu-
ation board. The comparator logic state is routed to a TTL 
output wire that corresponds to the DAC channel number. The 
DAC module also implements a single-pole high-pass filter 
(HPF) on the selected amplifier data stream.

A second module, also included in the existing Intan USB/
FPGA interface, contains a state machine that controls the 
delivery of ICMS to a selected amplifier channel. The module 
can be configured through the GUI to deliver stimuli on the 
rising or falling edge of a TTL input signal. Thus, by physi-
cally connecting pairs of TTL inputs and outputs, ‘closed-
loop’ stimulation based on the detection of threshold-crossing 

events (in this case, extracellular action potentials, or spikes) 
is already possible using the USB/FPGA interface as provided 
by the vendor.

The main contribution described herein is the addition of a 
state machine for spike detection that offers improved artifact 
rejection, while taking advantage of the short-latency compar-
ator in the DAC module of the existing USB/FPGA interface. 
Importantly, we sought to make as few changes as possible to 
the existing toolkit provided and validated by the commercial 
vendor, in the hopes that any changes we introduced could 
be more easily integrated to existing workflows. Overall, the 
changes amount to an increase of 408 flip flops compared to 
the originally synthesized architecture, well within the bounds 
of the available resources on the XEM6010-LX45.

2.2.  Software interface

Software was modified from the original open-source C/C++ 
code provided by Intan Technologies for use with the RHS2116 
amplifier IC, retaining many similarities with the original. 
The software implements a GUI, which provides a front-end 
to the USB/FPGA interface. Modifications described in the 
present study were added using Qt (version 5.8). Applications 
were compiled for Windows 32- and 64-bit operating systems 
using compilers for Microsoft Visual Studio 2015. This modi-
fied GUI includes a tab that allows configuration of the DAC 
(figure 2(A), left panel) and the popup window for visualizing 
spikes is altered to accommodate online specification of each 
of the four parameters for each DAC channel used in the state 
machine detector, as described in figure 2(A).

2.3.  Spike detection state machine

The core of the spike detection state machine is a simple logic 
cycle that runs in the main module of the USB/FPGA inter-
face (figure 2(A), right). The state machine allows up to eight 
threshold levels (Li, where i is an integer from 1 to 8) with the 
following user-defined parameters (figure 2(A), left):

Figure 1.  Overview of system architecture and implementation. An amplifier chip is interfaced to the field-programmable gate array 
(FPGA), via a serial-parallel interface (SPI). N electrode channels are routed to a high-gain amplifier. On board the FPGA, amplifier data 
from the FIFO buffer are piped to the host device via a USB interface. The digitized signals from any selected combination of amplifier 
channels (blue) can also be routed to up to 8 digital-to-analog converter (DAC) channels, where threshold comparator logic can be applied 
with sub-millisecond latency. In this example, four threshold windows are applied to the filtered data stream from amplifier channel 1.
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Figure 2.  Spike detection state machine implementation. (A) Left: example of a spike that would be included (black) and waveforms that 
would be rejected (grey) by the three state machine levels depicted (L1, L2, and L3, denoted by corresponding thresholds a1, a2, and a3). 
The dark-grey waveform exceeds the red exclusion threshold (a3), while the light-grey waveform does not meet the second blue inclusion 
threshold (a2). The black spike is included because the absolute value of its negative component does not exceed the absolute value set by 
a3, while the absolute value of its positive component exceeds the level set by the second blue inclusion level a2. The parameters (a–e) are 
defined by the user during acquisition and are illustrated for the red exclusion level shown. Right: state flow diagram for the spike detection 
state machine. By default, the detector is in the idle state (grey), but transitions to active (black) as soon as the data stream fulfils the 
parameters for the earliest window (magenta). If the waveform meets all criteria specified by the defined levels, the state switches to trigger 
(orange), then automatically reverts to idle. (B) Threshold logic in the DAC module. For each of the 8 DAC channels, the corresponding 
parameters determine if the machine is within the start and stop points of the window, relative to when the counter started, as well as 
whether it crossed the threshold (depending on threshold polarity). (C) Active and idle counter incrementing logic. If the data stream meets 
criteria of each enabled level that applies to the current counter value, the counter is advanced by 1.

J. Neural Eng. 16 (2019) 066022
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	 •	�Threshold, ai, refers to the voltage value (µV) that the 
signal must pass through to count as a crossing. If the 
threshold is negative, then a crossing occurs when the 
signal value is less-than or equal-to the threshold value 
(figure 2(B), multiplex logic). If the threshold is positive, 
then a crossing occurs when the signal is greater-than or 
equal-to the threshold value. This number is an unsigned 
16-bit integer, which is limited between  −5000 µV 
and  +5000 µV, based on the dynamic range and scaling 
of the amplifier and DAC.

	 •	�Start, bi, refers to the (inclusive) onset sample of the 
window Li. If the state machine counter is less than this 
value, the threshold conditions for the specified window 
will not be considered in the state machine logic. The 
state machine switches from idle to active (as defined 
below) once the filtered amplifier data stream routed to 
DAC channel i meets the criteria for Li, if bi  =  0.

	 •	�Stop, ci, refers to the (exclusive) end sample of the 
window Li. If the state machine counter is equal or higher 
than this value, the threshold conditions for the specified 
window will not be considered in the state machine logic. 
The maximum stop value, cmax, defines the total duration 
of the spike detection state machine.

	 •	�Type, di, refers to the amplitude bounding for window 
Li. It depends upon the polarity of the threshold. A 
value of zero corresponds to an ‘include’ type window, 
which means that the signal must be less than a nega-
tive threshold or greater than a positive threshold while 
the state machine counter is within the range defined by 
the start and stop samples (figure 2(C)). A value of one 
corresponds to an ‘exclude’ type window, which enforces 
the opposite conditions (signal must be greater than a 
negative threshold or less than a positive threshold).

	 •	�Enable, ei, refers to whether window Li is involved in the 
decision circuit for the state machine. The state machine 
can run with as few as 1 and as many as 8 windows ena-
bled.

In the specific example of figure  2(A), we have defined 
three levels (e.g. L1, L2, and L3), where a1 and a2 are the blue 
‘inclusion’ thresholds (d1  =  d2  =  0) and a3 is the red exclu-
sion threshold (d3  =  1). Therefore, the dark-grey spike, which 
crosses threshold a3, is excluded, but the black spike is not. 
Likewise, the light-grey spike, which does not cross the a2 
blue ‘inclusion’ threshold is also excluded. In total, the state 
machine runs for cmax samples, starting whenever the state is 
‘idle’ and the filtered signal is less than a1.

The state machine increments a counter on the rising edge 
of the sample clock depending upon its current state, which is 
always in one of these three conditions:

	 1	�idle, when one or more of the level criteria is not met or 
no DAC channel is enabled (figure 2(A), grey); 

	 2	�active, when the criteria for each enabled DAC with a 
start value less than or equal to the current sample index 
and a stop value greater than the current sample index 
channel is true (figure 2(A), black); or,

	 3	�trigger, when the counter equals the largest enabled DAC 
window stop value (figure 2(A), orange).

The counter increments only when the state machine is in 
the active state, and resets to zero any time it enters the idle 
state (figure 2(A); right). If the state machine reaches the trigger 
state, it returns to the idle state on the ensuing sample clock 
cycle. Each state of the machine is reported by the high state 
on a unique pair of TTL output and input wires (see supple-
mentary section  S4 (stacks.iop.org/JNE/16/066022/mmedia) 
for details).

2.4.  Surgical implant and recording for in vivo testing

All protocols for animal use were approved by the Kansas 
University Medical Center Institutional Animal Care and 
Use Committee in compliance with the Guide for the Care 
and Use of Laboratory Animals (Eighth Edition, The National 
Academies Press, 2011). Briefly, adult male Long Evans rats 
were anesthetized using a combination of ketamine and xyla-
zine as described previously (Nishibe 2010). A laminectomy 
was performed to minimize edema during the procedure. 
Five 00-80 stainless steel skull screws were fixed around the 
perimeter of the skull to improve attachment of the dental 
acrylic cap. Using stereotaxic coordinates, a craniectomy 
was made over sensorimotor cortex of the left hemisphere. 
Microwire arrays were positioned to span the rostral forelimb 
area (RFA), caudal forelimb area (CFA), and forelimb sensory 
cortex (S1), which was confirmed by a brief ICMS mapping 
procedure before insertion to a depth of approximately 1500 
µm. An external silver wire on each array was tied to the same 
skull screw placed in the interparietal bone, which acted as 
a common ground. In the rat used for session A (recording 
sessions described below), the microwire array was a custom 
in-house design consisting of 32 channels of 33 µm diameter 
polyimide-coated tungsten wire (California Fine Wire Co., 
Grover Beach, CA), which were distributed throughout RFA, 
CFA, and S1 in a non-uniform grid pattern. The rat used for 
sessions B and C was implanted with a commercial microwire 
array (MicroProbes for Life Science, Gaithersburg, MD) con-
sisting of 16 channels of nickel-chromium alloy 50 µm diam-
eter wires arranged in a 4  ×  4 grid with 250 µm site spacing 
implanted in S1. Qualitatively, spiking activity from both data-
sets was similar, but session A contained a few channels with 
large, stereotyped spikes, while spikes tended to be smaller 
in amplitude for sessions B and C. Prior to each recording, 
the rat was placed under anaesthesia via isofluorane induc-
tion, and subsequently one channel located within RFA was 
used for recording, while a single S1 channel was used in 
any stimulation sessions Electrode impedances ranged from 
750 to 1500 kΩ at recording sites. Recordings were made in 
3–5 min blocks during and after recovery from anaesthesia.

Recordings were made during three separate sessions. 
Recording sessions were assigned the codes ‘A’, ‘B’, and 
‘C’. The main features and how these data were used within 
the current work are summarized in table 1. Session A was 
taken from a first rat, three days after implantation, and con-
tains a single epoch in which no stimulation was performed, 
which was used for subsequent offline characterizations due 
to the presence of large, stereotypical spike waveforms and 
low noise floor (RMS 18.6 µV, rectified median 11.3 µV). 
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Sessions B and C were taken from a second rat approximately 
three months after the implantation. Session B tested the 
latency between spike detection using the state machine and 
onset of stimulation. Session C tested the online performance 
of the spike detection state machine using ad hoc parameters 
selected while the experiment was ongoing (e.g. to mimic 
a typical use case). Specific parameters for each recording 
session are reported in detail in table  S1; sub-indices indi-
cate identical recording data that was re-run offline using a 
simulated test bench to characterize performance. To identify 
chewing periods (which bias performance toward false posi-
tive spike detection due to the presence of high-amplitude bio-
logical noise), a simultaneous video stream was synchronized 
with the neurophysiological data from session C through co-
registration of a flashing LED that was tied to a digital input 
on the acquisition board.

2.5.  Offline performance testing

Performance of the spike detection state machine was evalu-
ated by comparing offline detection of spikes from the in 
vivo data from session A, either using a monopolar threshold 
detector or the state machine detector. To ensure that the 
analyses accurately captured online performance, we first 
validated the fidelity of the reconstructed recorded signals by 
ensuring that the DAC amplifier data stream and digital logic 
state streams recorded in vivo during session C matched those 
generated by the offline DAC filter and state machine simula-
tion. Simulations were performed using test benches compiled 
in verilog, MATLAB (R2017a+), and Simulink (R2018b), 
as described in the supplementary methods section. The test 
benches are included in the online code repository along with 
the modified software and hardware code. Once we verified 
that there was no difference in the simulated digital logic state 
signals and the recorded ones, we used the DAC amplifier data 
stream recorded from session A to simulate the spikes detected 
using both a single-threshold detector (A0) as well as all events 
that entered the active and trigger states using the state machine 
detector (A1). For the monopolar threshold detector, spikes 
were only counted on the logical rising edge of the threshold 
crossing. Selection of a monopolar threshold was fixed at 40 
µV, which was initially determined online by visual inspection 
of the spike scope to set a level that appeared qualitatively to 
reject noise while accepting most multi-unit spiking.

To characterize the ability of the spike detection state 
machine to reject artifact while still detecting viable spikes 
we calculated accuracy, defined as the ratio of the sum of 
correctly classified spikes (true positives; TP) and correctly 
classified artifacts (true negatives; TN) to the total number of 
spikes and artifacts detected. To determine whether spikes or 
artifacts detected during a simulation were correctly classified, 
a set of target classifications for spike and artifact waveforms 
were obtained offline using manual sorting to group similar 
waveforms. This consisted of a cluster cutting technique in 
which the spikes and artifactual waveforms were assigned 
iteratively through the manual selection of waveforms from 
the candidate set of waveforms detected as either spikes or 
artifacts by the detector, similar to the technique described 
in Harris (2000). While this method of classifying multi-unit 
spike waveforms has limitations depending on the amplitude 
of units under consideration (Harris 2000), the purpose was 
to illustrate the ability of the spike detection state machine to 
reject artifactual waveforms, a situation for which an experi-
enced operator is well-suited.

To verify our results on a dataset in which the ground truth 
spike times are already known, we synthesized an additional set 
of recordings (C3, in which a threshold detector was applied, 
and C4, in which the state machine detector was applied; 
parameters in table  S1). In these simulations, known spike 
waveforms were added to a non-spiking recording channel 
at 1500 uniformly sampled random samples throughout the 
duration of the sample record. It should be noted that in 
these simulations, identical recordings can yield slightly dif-
ferent numbers of total detected spike and artifact waveforms 
depending on which spike detection procedure was simulated 
even if the initial inclusion threshold is the same for the state 
machine detector and the threshold detector: because the state 
machine has a minimum duration that requires multiple sam-
ples in order to detect the spike, probabilistically there are 
more opportunities to identify candidate spike and artifact 
waveforms when using a single-threshold detector, potentially 
leading to a slightly higher number of total event classifica-
tions when using the monopolar threshold detector.

After either sorting the detected spike and artifact wave-
forms to obtain the target classifications or using the a priori 
known ground truth spike times as targets, performance was 
obtained using confusion matrices to compare the detected 
outputs (e.g. spikes or artifacts) against the target outputs (e.g. 
spike or artifact classifications of the detected outputs using 
offline sorting). Sensitivity (or true positive rate; TPR) was 
estimated as the ratio of correctly classified spikes to the sum 
of correctly classified spikes (TP) and outputs given as arti-
facts that were determined to be spikes by offline sorting (false 
negatives; FN). True negative rate (TNR) was estimated as the 
ratio of correctly classified artifacts (TN) to the sum of cor-
rectly classified artifacts and outputs given as spikes that were 
determined to be artifacts by offline sorting (false positives; 
FP). Precision (positive predictive value (PPR)) was estimated 
as the ratio of TP to the sum of TP and false positives. The 
false discovery rate (FDR) was estimated as the ratio of false 
positives to the sum of TP and false positives. The false nega-
tive rate (FNR) was estimated as the ratio of false negatives 

Table 1.  Summary of recording data sets taken from rats. 
Recordings were taken from awake, ambulatory rats implanted 
in RFA and S1. Columns describe whether stimulation was used, 
the main feature that distinguishes that recording dataset from the 
others, and the reason the recording was used in this study.

Name Stim? Feature Use

A No Large stereotypical 
spikes; low noise

Offline 
performance

B Yes Stimulus artifacts Test latency 
of stimulation

C No Typical use case; 
synchronized video 

Online 
performance

J. Neural Eng. 16 (2019) 066022
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to the sum of TP and false negatives. These last two metrics 
(FDR and FNR) were of special interest, as we aimed to 
reduce FDR while maintaining a low FNR.

3.  Results

3.1.  Ability to detect waveforms of interest

An important feature of the spike detector state machine is 
the ability to identify relatively low-amplitude spikes during 
epochs that contain periods of relatively high-amplitude 
biological artifact. Biological noise, such as arises from 
mechanical vibration and EMG that occur during chewing and 
whisking, leads to large-amplitude, high-frequency (>300 Hz) 
deflections in the signals observed on electrodes embedded 
within cortex. To illustrate this, we isolated a short exem-
plar epoch from recording session C in which the presence 
of chewing was verified by synchronizing the electrophysi-
ological data stream with video of the rat moving freely in the 
recording chamber. While these epochs of activity are likely 
generated by biological sources, they may still be undesirable 
during motor recordings designed to study neurophysiological 
spiking of units related to other motor behavior (i.e. forelimb 
movement during pellet retrievals). Unfortunately, the simple 
threshold detector produces many false-positive spike detec-
tions during such epochs (figure 3(A), red highlighting). By 
contrast, the state machine detector is still able to correctly 
detect spikes (figure 3(B), blue highlighting) during the noisy 
periods without mistakenly triggering from the same wave-
forms that are problematic for the threshold detector (figure 
3(B), green highlighting). Even within a single recording 
session and on a single recording amplifier channel, it was 
possible to distinguish between substantially different spike 
waveforms by customizing the parameters sent to the spike 
detection state machine online. Parameters that were selected 
online (recording C0, table  S1) captured the smaller multi-
unit activity (figure 3(C)), whereas offline adjustment of 
parameters led to the ability to isolate waveforms from the 
larger of the two units (figure 3(D)). Importantly, the ability 
to set the level parameters in real-time, thanks to the modified 
GUI (figure S2), improved ease-of-use compared to existing 
systems, in which a ‘training’ recording must first be obtained 
and analysed offline before allowing parameters to be set 
(Azin et al 2011a, 2011b, Guggenmos 2013).

3.2.  Performance in awake ambulatory rats

To quantify the online performance of the state machine we 
performed manual offline sorting of spike and artifact wave-
forms (from session C). We considered the offline sorting as 
ground truth, which allowed us to compute confusion matrices 
comparing the online classification (e.g. spike or artifact) to 
the offline sorted classification for the same waveform for 
each monopolar threshold crossing (figure 4). The number 
of spikes correctly detected by the online spike detector state 
machine was 2163 out of 2582 (meaning a sensitivity, or TPR, 
of 83.8%). The number of TN (i.e. artifacts not detected as 

spikes) was 40 188 out of 40 835 (meaning a specificity, or 
TNR, of 98.4%). The number of artifacts incorrectly classi-
fied as spikes was 647, resulting in a 23% FDR for the online 
spike detector state machine. Artifacts that led to false-pos-
itives contained qualitative similarities with the spikes of 
interest, which may account for this value (figure 4(B), FP-1 
and FP-2). Overall, the online accuracy of the spike detector 
state machine was 97.5% (figure 4(A); recording C0), which 
is inflated by a high number of TN samples due to the rela-
tively large number of artifacts passed by the monopolar 
threshold. In practice, this could be mitigated using a mono-
polar threshold set to a much higher value; however, while 
increasing the threshold could reduce the number of artifacts 
falsely detected as spikes, it would also reduce the number 
of TP spikes and is therefore not a feasible solution. Indeed, 
even the synthetic insertion of large-amplitude (−150 µV 
peak) spikes at known times to a non-spiking channel results 
in an FDR of 90.5% for a monopolar threshold of  −100 µV, 
while the state machine detector yielded an FDR of 29.3% and 
overall accuracy of 72.2% (figure S3).

Using a channel selected for its low noise floor and large-
amplitude spike waveforms recorded in vivo (session A), we 
computed the same performance measures used in the pre-
vious case (figure 5(A)). Performance overall was compa-
rable (97.1% accuracy) due to the large number of correctly 
rejected waveforms. However, careful parameter selection 
also yielded an improved FDR (6.9%) and FNR (2.8%) for 
the state machine spike detector under these ideal conditions. 
We compared the best-case performance of our state machine 
detector to a monopolar threshold detector. Using identical 
recordings, there is a dramatic improvement in the FDR when 
using the state machine detector (189 artifacts characterized 
as spikes, of a total 2075 spikes detected online, figure 5(B)) 
compared to the monopolar threshold detector (2770 arti-
facts characterized as spikes, of a total 7075 detected spikes, 
figure 5(B)). This improvement results from the rejection of 
artifactual waveforms, such as occur during epochs of bio-
logical noise (e.g. chewing, figures 3(A) and (B)).

3.3.  Mean latency from spike peak to stimulus delivery

The total latency for an activity-dependent stimulus can be 
considered as the sum of the algorithmic latency (to reli-
ably detect an event) and the computational latency (due to 
the system). Algorithmic latency, in this case, depends on the 
maximum number of samples needed to detect a spike. In this 
work, spikes were detected using state machines that varied 
between 300 µs (session B; 9 samples at 30 kHz sample fre-
quency) and 800 µs (session C; 24 samples at 30 kHz sample 
frequency). Therefore, the exact algorithmic latency is spe-
cific to the parameterization of the user-defined threshold 
levels. Our work did not alter the computational latency 
between the event detection and the delivery of the stimulus. 
During session B, the Intan Stimulation/Recording Controller 
stimulation sequencer module delay was set to zero millisec-
onds, allowing us to estimate the computational latency as the 
minimum latency between the rising edge of the virtual TTL 
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input corresponding to the trigger state of the spike detection 
state machine and the onset of stimulus artifact. The compu-
tational latency obtained in this way was 167 µs (five samples 
at 30 kHz sample frequency; figure S1). Therefore, the total 

latency of the system during spike detection was reliably less 
than 1 ms, mainly due to the algorithmic latency, and indicates 
that the detector is responsive on a timescale that is both fast 
and reliable enough to be used for performing ADS.

Figure 3.  Qualitative performance of the implemented spike detection. (A) 200ms of high-pass filtered data from session C during single-
threshold (−40 µV; simulation C2) spike detection. Red box represents a 130ms epoch of chewing. Red highlighting (false positive) 
indicates spikes that were wrongly detected. Blue highlighting (TP) shows spikes that were correctly identified. (B) Same data as in panel A 
with superimposed detections from the state machine spike detector. Green highlighting (TN) indicates artifacts that were correctly rejected 
by the state machine. Grey highlighting (false negative) indicates a case of true spike not detected by the state machine. (C) Random sub-
sampling of 250 detected (magenta) and 250 rejected (grey) waveforms using the spike detection state machine in real-time (recording 
C0), using the digital outputs from the online state machine. Flat lines represent threshold levels. Black spots represent inclusive samples 
that must meet the threshold criteria, while ends of lines are open to represent the non-inclusive threshold criterion. Cyan thresholds 
must be exceeded, whereas red thresholds must not be exceeded. (D) An offline reconstruction (recording C1) was used to simulate the 
state machine using different window parameters. This random sub-sampling of 250 detected and 250 rejected waveforms indicates how 
the parameters could be set differently to isolate spikes from a different unit. Note that increasing the duration of the state machine also 
increases the total time to detection.
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Figure 4.  Typical performance compared to offline sorted spikes. (A) Confusion matrix for comparison of online spike detection state 
machine performance after manual offline sorting of spike and artifact waveforms (recording C0). The blue box contains the number of TP 
spikes and the percentage of the overall detected events that fit this category. The salmon box contains the number of false positive spikes 
detected by the algorithm, as determined by manual sorting. The grey box indicates the number of rejected spikes (which entered but did 
not complete the state machine) that were scored offline as spikes. The green box represents waveforms that were rejected by the state 
machine and were also classified manually offline as artifact. The top row on the far-right column show the PPR in blue and FDR in red. 
The second row on the far-right column shows the negative predictive value (NPV) in blue, and the false omission rate (FOR) in red. The 
first column on the bottom of the matrix show the sensitivity (or true positive rate, TPR) in blue and the FNR in red. The second column 
on the bottom of the matrix shows the TNR in blue and the false positive rate (FPR) in red. The box in the bottom right of the plot shows 
the overall accuracy (ACC) in blue and its complement (the error percentage, ERR) in red. (B) Offline sorting used for comparison. Lighter 
regions indicate a higher density of waveforms passing through those voltage values. Spikes were manually sorted using cluster cutting to 
separate units into characteristic waveforms. Magenta outline indicates spike profile used for offline sorting in panel (A). Bottom two panels 
(FP-1 and FP-2) are characteristic waveform types that sometimes passed the state machine conditions, contributing to the number of false 
positives.

Figure 5.  Ideal performance compared to offline sorted spikes and monopolar threshold detection. (A) Simulated performance using an 
ideal in vivo recording with large spikes (recording A1). Although the simulated performance is applied to a channel with high-amplitude 
spike waveforms, the overall accuracy effectively remains consistent. This is due to the relatively large proportion of waveforms that are 
correctly rejected (middle box). (B) Manual offline sorting performed for recording A1 (presented in panel A), as well as a comparison to 
performance of true (blue) to false (salmon) discoveries for the state machine detector and a simple threshold detector for the same dataset 
(recording A0).
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4.  Discussion

We developed a modified version of an open-source com-
mercial system to implement closed-loop stimulation with 
sub-millisecond latency. The main improvement is the imple-
mentation of a spike detection state machine with an interface 
that allows the application of eight reconfigurable thresholds 
to any combination of different or identical amplifier channels. 
The implemented state machine slightly reduces sensitivity 
(i.e. TPR, figure  4(A)), but drastically improves specificity 
(i.e. reduced FDR; figures 5(A) and (B)), which may be crit-
ical in designing closed-loop electrical stimulation paradigms 
in the central nervous system in vivo. This improvement in 
selectivity is particularly important when the stimulation para-
digm must be implemented during ongoing natural behavior, 
such as chewing or whisking (figure 3).

Although the focus of this study was on applying the 
improved detector for use in ADS, we envision that this type 
of low-latency, highly-selective discriminator could be useful 
in a range of closed-loop applications. For example, feedback 
need not be delivered in the form of stimulation pulses but 
could instead be incorporated as a part of the experimental 
design itself, such as the delivery of a reward contingent 
upon the discrimination of a unique spike waveform (Koralek 
2012). However, the context of developing closed-loop neu-
roprostheses for applications such as neurorehabilitation pro-
vides important constraints. For example, a critical aspect 
of the ADS paradigm is the timing of stimuli based on the 
detection of a stereotyped waveform that represents a small 
group of cells near the recording microelectrode (Guggenmos 
2013). Therefore, it is desirable to minimize the FDR while 
maintaining a detection algorithm that can be implemented 
with low latency and customizable sensitivity to maximize 
the chances of invoking Hebbian mechanisms of plasticity 
between cells at the detection site and those at the stimula-
tion electrode (Bi and Poo 1998). It is possible that such a 
stimulation regime could be augmented by incorporating mul-
tiple stimulation sites at offset latencies from a single trigger 
source; this is also possible using the system presented in this 
study. Similarly, although not tested here, the modifications 
presented can apply simultaneous thresholds to several spa-
tially distributed sites simultaneously. This provides a prac-
tical way to mitigate the large, non-neural sources of noise that 
result from a failure in the common-mode rejection, which are 
typically present on multiple channels simultaneously. Future 
versions of the discriminator presented here that scale to an 
arbitrarily large number of thresholds could then be useful in 
sorting using tetrodes or other high-density arrays.

With the rising interest in applications of closed-loop tech-
nologies for stimulation of the central nervous system (Levi 
2018), a number of methods for implementing closed-loop 
stimulation have been made openly available. These include 
software packages, such as Falcon (Ciliberti and Kloosterman 
2017), the Open Ephys GUI (Siegle 2017), and NeuroRighter 
(Newman 2013); however, software implementations of online 
spike detection and triggered stimulation typically suffer from 
the latencies imposed when performing serial communica-
tion with the host computer. One exception is the Real-Time 

eXperiment Interface (RTXI, (Patel 2017)); however, because 
the system is designed to operate using a National Instruments 
Data Acquisition card (NI-DAQ), it may be difficult to scale to 
a very high channel architecture. On the other hand, the ADC 
of the RHS2116 is scalable, and because digitization occurs 
very close to the source (on the headstage), yields improved 
noise characteristics.

Hardware implementations, such as the synthesized bitfile 
that can be readily uploaded to effectively transform an FPGA 
into a commercial neurophysiological acquisition system, are 
not as widely distributed. Because hardware implementations 
typically have very specific design constraints and are optim
ized to meet those constraints, it is impractical to develop 
and distribute open-source hardware for closed-loop neuro-
prosthetics. Just as the RTXI system is not readily compat-
ible with the Intan amplifier chips, hardware implementations 
(Ambroise 2017, Buccelli 2019) are designed to interface 
with in vitro microelectrode arrays that interface to an FPGA 
with different input and output pin configurations, making 
it difficult to provide a ubiquitous hardware bitfile for every 
experimental setup. Alternatively, moving from a hardware 
implementation in an FPGA to a custom application specific 
IC (and subsequent commercialization) becomes more prac-
tical for individual applications.

To minimize changes to the existing open-source software 
provided by Intan, the spike detection state machine was 
implemented in the DAC module. This imposes the limita-
tion that only one spike detection state machine can run at a 
time. At a maximum, up to eight different amplifier channels 
could be polled for synchronous or near-synchronous events, 
or eight threshold criteria could be applied to the waveform of 
a single amplifier channel. Making substantial modifications 
to the existing FPGA might allow scaling of a spike detection 
state machine module to any arbitrary number of thresholds 
on different channels. A natural extension of this work would 
be to scale up the number of trigger sources for multi-stream 
ADS, particularly as FPGA evaluation boards with increased 
on-board resources become available. Generalizing the state 
machine to a higher number of independent channels by run-
ning it as a module that is independent of the DAC, automating 
the process of setting threshold levels (e.g. using spike ‘tem-
plates’), and integrating independent state machines to allow 
concurrent detection of events in multiple frequency ranges 
are currently being investigated to improve their application in 
closed-loop neuroprosthetic interfaces. Automating the pro-
cess of setting threshold levels, especially as channel counts 
scale up, will be important, as the improved rejection may also 
reduce sensitivity, depending upon the ad hoc parameters set 
by the operator. Algorithmically, the state machine is funda-
mentally similar to the one implemented in Azin et al (2011b); 
however, the state machine described here allows more flex-
ibility in the parameterization of each threshold level by 
allowing the end-user to set each of the following four param
eters while the application is running.

We have provided modifications to an existing interface for 
conducting electrophysiological experiments using closed-
loop stimulation. These improvements allow spike detection 
to be performed with a higher selectivity at the expense of 
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a reduced sensitivity. This trade-off is dependent upon the 
ad hoc selection of parameters, which can be adjusted by 
the experimenter in real-time. The architecture in which this 
improved spike detection state machine is implemented has 
the possibility to scale to a very high number of channels in 
the future, improving current and future functionality. Our 
contribution to the original design improves the accessibility 
of investigating closed-loop stimulation paradigms, which 
may be necessary for effective, therapeutic neuroprosthetic 
systems.
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